
Supporting Information
Paul J. Ferraro �, Merlin M. Hanauer � , and Katharine R.E. Sims y

�Department of Economics, Andrew Young School of Policy Studies, Georgia State University, PO Box 3992, Atlanta, GA 30302-3992, USA, and yDepartment of Economics

and Environmental Studies Program, Amherst College, PO Box 5000, Amherst, MA 01002

Conditions associated with protected area success in conservation and poverty reduction

Data
Costa Rica.For full details on data, see Andam et al. (1,2).
Digital layers of protected areas (source: National System of
Conservation Area O¢ ce, Ministry of Environment and En-
ergy, 2006) were provided by the Earth Observation Systems
Laboratory, University of Alberta. Other GIS layers are land
use capacity (source: Ministry of Agriculture) and roads dig-
itized from hard copy maps for 1969 (source: Instituto Ge-
ográ�co Nacional, Ministerio Obras Publicas y Transporte).
Summary statistics of the data are presented in Table S1.

For the deforestation analyses, digital forest cover layers
are created from either aerial photographs (baseline, 1960)
or Landsat Thematic Mapper satellite images.1 The units of
analysis are land parcel pixels that measure three hectares, the
minimum mappable area. We use Andam et al.�s (1) data set,
which comprises 20,000 randomly selected land parcels that
were forested (80% or more canopy cover) in 1960. Forested
parcels in a given year receive a value of 1; deforested parcels
receive a value of 0. The outcome of interest is change in forest
cover between 1960 and 1997. Given all sample parcels were
forested in 1960, the outcome measure equals 0 if the parcel
is still forested in 1997 and 1 if it is deforested.

Spatial layers of protected status (IUCN categories Ia, I,
II, IV and VI are used in the analyses) and other geographic
characteristics are used to create a set of covariates for each
land parcel (Table S2). For various reasons (e.g., cloud cover),
4,737 land parcels are dropped prior to analysis, leaving 15,283
land parcels, of which, 2,809 were protected prior to 1980. We
remove parcels that were protected after 1980 (2,183), leaving
10,291 unprotected land parcels from which matches can be
drawn.

For the poverty analyses, data come from the population
and housing censuses conducted by the Instituto Nacional de
Estadistica y Censos (INEC) in 1973 and 2000. Digitized
GIS census segment boundaries for 1973 and 2000 were pro-
vided by the Cartography Department at INEC. The unit of
analysis is the census tract (segmento). In 1973 Costa Rica
contained 4,694 census tracts with an average size of 8.82km
(range: 0.00466-836 km). The 1973 census is used as the base-
line year and all census data are geocoded to their respective
census tracts. Between 1973 and 2000 there was a great deal
of segmentation of census tracts, with few of the segmented
tracts being proper subsets (or sharing major borders) with
the original 1973 census tracts. Through the method of areal
interpolation ((2, 3); see below), the 2000 census data are ag-
gregated to �t to the 1973 census tract boundaries so that the
data are spatially and temporally comparable.

The poverty measure (poverty index) builds on recent ef-
forts to develop a census-based poverty index for Costa Rica
(4), which uses principal components analysis to formulate a
temporally comparable index based on variables believed to
in�uence poverty.

Thailand.For full details on data see Andam et al. (2) and
Sims (5). Digital layers of protected area boundaries are
from the IUCN World Database on Protected Areas (accessed
3/2007; IUCN categories I and II were used in the analyses).
Other GIS data and the source layers from which they are de-

rived are slope and elevation (NIMA�s Digital Terrain Eleva-
tion Data- USGS Global GIS database, 1999); distance to ma-
jor cities (ESRI World Cities, 2000); distance to roads in 1962
(digitized East Asia Road Map, U.S. Map Service 1964, data
from 1962); distance to rail lines, distance to major rivers,
proximity to watershed boundaries, distance to mineral de-
posits, distance to Thai border, and ecoregions (USGS Global
GIS database, 1999), average monthly temperature and rain-
fall (Marc Souris, IRD).

The deforestation analysis is based on two classi�ed layers
from 1973 and 2000. The 1973 data are based on Landsat
MSS images interpreted by the Tropical Rain Forest Informa-
tion Center (Michigan State University) and the 2000 data on
Landsat TM images interpreted by the Thai Royal Forestry
Department (courtesy of Marc Souris). The units of analysis
are points which are spaced so as to represent the centroid of
a three hectare parcel. The data set is created in a similar
manner to the Costa Rica deforestation data set and com-
prises 20,000 randomly selected points which were forested in
1973. Forested points in a given year receive a value of 1; de-
forested points receive a value of 0. The outcome of interest is
change in forest cover between 1973 and 2000. Given all sam-
ple points were forested in 1973, the outcome measure equals
0 if the point is still forested in 2000 and 1 if it is deforested.
Spatial layers of protected status and other geographic char-
acteristics are used to create a set of covariates corresponding
to each sample point (Table S2).

For the poverty analysis the unit of analysis is a subdis-
trict (tambon). In descending order of size, Thailand has ad-
ministrative units of "province," "district," "subdistrict," and
"village." The sample consists of subdistricts in the North and
Northeast regions, where the majority of protected forest ar-
eas are located. We exclude subdistricts that are less than
10 km away from a major city (population > 100,000; all of
these cities had been established by the 1960�s). The average
size of a subdistrict in the sample is 74 sq km; the average
population is 5043.

The poverty measure for Thailand (poverty headcount ra-
tio) is the share of the population with consumption below
the poverty line. This outcome is derived from a poverty
mapping analysis by Healy and Jitsuchon (6), applying the
poverty mapping methodology developed by Elbers et al. (7).

Preprocessing
We preprocess the data (8, 9) using matching techniques prior
to performing any of the LOESS or PLM analyses. Our pri-
mary motivation for matching is not the estimation of an over-
all average treatment e¤ect on the treated. With the excep-
tion of an analysis of Thailand deforestation at the scale used
in our study, these impacts have already been estimated (1, 2).
We use matching to preprocess the data so that we can esti-
mate conditional average treatment e¤ects on the treated. To
ensure that our analyses are as comparable as possible to the
studies from which we draw (1, 2), we use the same matching

1 Earth Observation Systems Laboratory, University of Alberta, Edmonton, AB.
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methods to create the same matched data sets as those stud-
ies. These methods were chosen in these studies because they
generated the best covariate balance.

The key to matching as an identi�cation strategy to esti-
mate average treatment e¤ects on the treated is the balanc-
ing of key covariate distributions across treatment arms (pro-
tected and unprotected). This covariate balance is achieved
in expectation through randomization. Covariate balance is
implicit under randomization because each unit of the exper-
imental sample has an equal probability (or more generally,
a probability that is known to the experimenter) of being as-
signed to treatment or control. Therefore, treatment is as-
signed independent of potential outcomes Y (1) and Y (0) un-
der treatment (T = 1) and control (T = 0), respectively. In
the absence of a treatment, one would expect similar aver-
age outcomes from both groups. Similarly, if both groups
were to receive (the same) treatment, one would expect sim-
ilar average outcomes from both groups. In the statistics,
epidemiology and social science literature this assumption is
termed ignorability of treatment, independence of treatment
or unconfoundedness. Stated formally,

E[Y (1)jT = 1)] = E[Y (1)jT = 0)] = E[Y (1)] [1 ]
E[Y (0)jT = 1)] = E[Y (0)jT = 0)] = E[Y (0)] : [2 ]

In words, [1] simply states that average potential outcome
for the treatment group under treatment, E[Y (1)jT = 1)]; is
equal to the average potential outcome of the control group
had they been treated, E[Y (1)jT = 0)]. Similarly, [2] states
that the average potential outcome for the treated group had
they not been treated, E[Y (0)jT = 1)], is equal to the aver-
age potential outcome of the control group in the absence
of treatment, E[Y (0)jT = 0)]: In [1] and [2], the terms
E[Y (1)jT = 0)] and E[Y (0)jT = 1)] are termed counterfac-
tual outcomes. The fundamental problem for causal inference
(10) is the fact that counterfactual outcomes are not observed.
However, with treatment assigned at random (and thus inde-
pendent of potential outcomes), the average outcome for con-
trol units can act as the counterfactual for treatment units,
and vice versa.

Protected areas in Costa Rica and Thailand were not es-
tablished randomly. Matching seeks to mimic the identi�ca-
tion of randomization by balancing key covariates that jointly
determine selection into treatment and outcomes. Balance,
conditional on key covariates, leads to conditional ignorabil-
ity or conditional independence. These more restrictive as-
sumptions can be stated formally as the analogs to [1] and
[2],

E[Y (1)jT = 1; X] = E[Y (1)jT = 0; X)] = E[Y (1)jX] [3 ]
E[Y (0)jT = 1; X] = E[Y (0)jT = 0; X)] = E[Y (0)jX]: [4 ]

Equations [3] and [4] state that, conditional on similar co-
variate distributions across treatment arms, the average out-
comes for the matched control units, E[Y (0)jX;T = 0)]; can
be used as the counterfactual for treatment units, and vice
versa. In other words, by ensuring that the distributions
of key covariates are balanced across treatment and control
groups, similar methods to those used in randomized exper-
iments can be used to estimate average treatment e¤ects on
matched datasets. We present [1]-[4] for completeness; how-
ever, we focus on the estimation of conditional average treat-
ment e¤ects on the treated, for which only [2] and [4] are
necessary.

By ensuring that units are comparable across treatment
and control groups, we make the conditional independence as-
sumption (CIA), which is necessary for causal inference, more

defensible (11). We extend the CIA by assuming that if av-
erage treatment e¤ect on the treated estimates are unbiased,
conditional on balance across key covariates, comparisons of
subgroups within these balanced sets are also unbiased. This
allows for causal inference to be drawn from the LOESS and
PLM analyses.

As mentioned in the main text, matching can only ac-
count for heterogeneity in observable covariates. If the selec-
tion process and outcomes are systematically determined only
by observable characteristics (for which one controls) then a
treatment e¤ect estimate derived from a matching algorithm
that provides balance will be unbiased and consistent. How-
ever, if there are unobservable characteristics that also con-
tribute to determining selection and outcomes, then treatment
e¤ect estimates, even for a well balanced matched sample, may
be biased. There is no way to formally test the conditional in-
dependence assumption, however Andam et al. (1, 2) test the
robustness of their estimates (which are derived from the same
matched sets used in our study) to unobserved heterogeneity.

Matched Datasets.For the Costa Rica data, we use nearest
neighbor Mahalanobis covariate matching with replacement
to preprocess the socioeconomic and deforestation data. We
use the same algorithm and covariates (Table S1) as Andam et
al. (1, 2), and thus our resulting matched datasets are nearly
identical to those used in their analyses.2 The resulting so-
cioeconomic matched set comprises 249 protected (prior to
1980) and unprotected census tracts. The resulting deforesta-
tion matched set comprises 2,809 protected (prior to 1980)
and unprotected land parcels. See Table S1 for description
and summary statistics of the covariates used in each Costa
Rica matching speci�cation.

For the Thailand socioeconomic data we use propensity
score matching with exact matching on district in order to
control for baseline �xed e¤ects associated with poverty. This
is the same speci�cation and matched set used in Andam et al.
(2010)(2) which comprises 197 protected (prior to 1985) and
unprotected subdistricts. For the Thailand deforestation data
we use Mahalanobis covariate matching, with exact matching
on district, to create a dataset that is similar to the Costa Rica
deforestation analysis (see Tables S4 and S5 for estimates of
ATT and balancing results). The resulting matched set com-
prises 2,808 protected (prior to 1985) and unprotected land
parcels. See Table S2 for description and summary statistics
of the covariates used in each Thailand matching speci�cation.

Thailand Deforestation Analysis.To ensure methodological
comparability across countries, we perform a similar defor-
estation analysis to that of Andam et al. (1) for Thailand.
Our primary interest was to create a dataset, comparable to
the Costa Rica deforestation dataset, with which to perform
the heterogeneity analyses. As a point of departure, however,
we perform sample average treatment e¤ect on the treated
calculations similar to those done in Andam et al. (1). There
are two bene�ts to this approach. First it o¤ers a comparison
to the original Costa Rica deforestation analysis (1). Second,
it provides an average treatment e¤ect on the treated (ATT)
estimate to which we can contrast our heterogeneity analyses.

In creating our deforestation dataset for Thailand we fol-
low the methodology of Andam et al. (1); see their SI Text),
all geoprocessing is done in ArcGIS 9.x. We begin by select-
ing 20,000 random points, spaced so as to represent 3 ha land

2 The socioeconomic matched set is identical to the �nal data set in Andam et al. (2). The de-
forestation matched sets would be exact, but we use a slightly updated protected areas database
resulting in slightly more protected observations. The average treatment e�ect on the treated es-
timates, however, are not di�erent between the two datasets. We present the balancing results in
Table S3.
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parcels, from the areas of Thailand that were forested in 1973,
our baseline year. Using spatial overlays, we create indicators
for parcels that were protected by 1985 (2,808) and parcels
that were protected after 1985 (3,423). The analysis is de-
signed to estimate the impact of protected areas that were
established prior to 1985 on deforestation outcomes between
1973 and 2000. Therefore, we remove from the pool of poten-
tial controls, any parcel that was protected after 1985. As a
result, our potential pool of controls comprises 13,609 parcels
that were never protected prior to 2000.3 We run a series of
overlay analyses on the remaining parcels to assign a value for
each of the covariates listed in upper panel of Table S2.

Using these data, we implement regression bias-adjusted
nearest neighbor Mahalanobis matching with replacement (9,
12) to estimate the ATT. Point estimates and balancing re-
sults can be found in Tables S3 and S4, respectively.4 Similar
to Andam et al. (1), we �nd that the naive di¤erence in
means overestimates the amount of avoided deforestation at-
tributable to the establishment of protected areas. As noted
in the main text, this is a �nding that is consistent with the
general observation that protected areas tend to be placed on
land that is less desirable for agriculture, and therefore less
likely to be deforested in the absence of protection. The re-
sulting matched dataset is used for the Thailand deforestation
heterogeneity analyses described in the main text.

Locally Weighted Scatterplot Smoothing (LOESS)
Three LOESS estimators (13, 14) are performed for each of
the covariates in the heterogeneous response to protection
analyses: (1) on the protected units only; (2) on the imputed
counterfactual control units only, and; (3) on the di¤erence
between protected and counterfactual unprotected units, the
Average Treatment E¤ect on the Treated (ATT).

In LOESS the data of interest are the doubles (Yi; Xi)
representing the outcome and covariate values for observation
i 2 f1; 2; :::; Ng, where N is the number of observations in the
dataset. The data are �rst ordered according to X such that
X1 � ::: � XN : Beginning with the �rst observation (i� = 1)

in this ordered set, �tted values
�bY �are predicted via a local

quadratic regression

bYi2s = b�0 + b�1Xi2s + b�2X2
i2s; [5 ]

where the vector b� is estimated from
Yi2s = �0 + �1Xi2s + �2X

2
i2s + �i; [6 ]

and only observations that lie within span (s) are used. The
total number of observations used for each imputation is there-
fore j = sN . Moving stepwise through the ordered data set,
N local regressions are estimated.

For each of these local regressions all of the j observations
are assigned a weight (wd) using the tricubic function

wd =

� �
1� jdij3

�3
for 0 � jdij < 1

0 otherwise
; [7 ]

where di is a cardinal distance ratio

di =
jXi� �Xij

max (jXi� �Xij)
: [8 ]

Here Xi� represents the covariate value of the observation
for which we are imputing bY . The weight wd reduces the
in�uence of observations according to their disparity in co-
variate value as compared to the observation being evaluated.
The LOESS estimation moves stepwise repeating [5]-[8] for

each (ith) observation, "re-centering" the span s to include
an equal number j observations about the ith observation.
The result of these N local regressions is N local �t values�bYi� and their corresponding standard errors of the �t which
can be used to form con�dence intervals about each �t value.
This standard LOESS process is run on the protected units
for each analysis (dash-dot line in Figures S3-S8).

We extend the LOESS methodology in order to o¤er com-
parability to the studies from which we draw (1, 2, 15) by in-
cluding local bias-adjusted imputation of counterfactual (un-
protected) outcomes. This type of method is used in the
matching literature (e.g., (9, 12)) to impute counterfactual
values by plugging the values of treated unit covariates into
the coe¢ cients estimated from a regression of control unit
covariates on control unit outcomes. The purpose of this im-
putation is to reduce post-match bias, in �nite samples, due
to remaining covariate imbalance. This process is like asking
the question, "what would the outcomes of protected units
have been in the absence of protection had their covariates
in�uenced their outcomes in the same manner as the units
that were not protected?"

Our methodology requires us to modify the LOESS pro-
cedure. In order to impute counterfactual outcome values for
each treated unit, both protected and unprotected units must
be used as inputs for the LOESS. Prior to the ith local es-
timation outlined in equations [5]-[8], a counterfactual value
for each protected unit outcome in the span (s) is imputed
according toeYi2s = Yi2s:T=0 + b�0 (Xi2s:T=1)� b�0 (Xi2s:T=0) ; [9 ]

where T is an indicator of treatment (0 and 1 indicating the
unit is unprotected or protected, respectively) and b�0(�) rep-
resents the predicted values obtained from combining the co-
e¢ cients from a control group regression, of outcome on co-
variates, with the respective treated or control covariates (see
Tables S1 and S2 for a list of the covariates).5 In addition
to estimating a LOESS curve based on these counterfactual
outcomes (dotted line in Figures S3-S8), the counterfactual
value eYi2s from [9] of the observation being evaluated (i�) is
stored in a vector for use in evaluating a LOESS for ATT.6

The LOESS curve for ATT is estimated using the di¤er-
ence between actual protected unit outcomes (Yi) and their

respective counterfactual outcomes
�eYi� from [9],�

Yi2s � eYi2s� = �0 + �1Xi2s + �2X
2
i2s + �i; [10 ]

where the corresponding �ts are estimated in a similar manner
to [3]. The standard error of the �t is used to form the con-
�dence band (red/green shaded area) about the ATT LOESS
curve (solid line in Figures 1 and S3-S8).

The span for any LOESS estimator must be chosen so as
to balance the bias/variance tradeo¤. A relatively small span
includes fewer data points and is considered to be more local-
ized and therefore less biased. However, there will be greater
variation, ceteris paribus, within a small span. Conversely, a
relatively large span uses more data and produces smoother
curves (less variation) that are considered to be more biased.

3 Due to incongruence in spatial layers, 160 parcels are dropped prior to analysis.
4 In addition to the covariates listed in Tables S2 and S4, matching is required to be performed
within districts (i.e., exact matching on district ID) to control for regional heterogeneity.
5 The imputations are calculated by plugging the covariates Xi2s:T=1 and Xi2s:T=0 into
the vector of coe�cients from the regression Yi2s:T=0 = Xi2s:T=0�0 + " to obtainb�0 �Xi2s:T=1

�
and b�0 �Xi2s:T=0

�
, respectively.

6 Imputations within the LOESS were programmed in R v2.10.1. Code is available from authors
upon request.
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For each of the LOESS estimators that we implement, we set
the span (s) equal to 0:75:We choose this span for all analyses
because: (1) after experimenting with many speci�cations we
felt that it captured the important underlying variability with
relatively little noise; and (2) we wanted to remain consistent
across analyses.

Partial Linear Model (PLM)
Model.For all (moderating) covariates introduced in the
Study Design section we use a two-stage semiparametric par-
tial di¤erencing linear model (16, 17). The PLM is advan-
tageous in that it allows us to control, linearly, for a vector
of covariates that in�uence the outcome of interest and then
map the outcome as a nonparametric function of the covariate
of interest.

The data used in the PLM are the triples (Yi; Xi; Zi) where
Y is the scalar outcome of interest, X is the scalar covariate
for which the nonparametric function will be estimated and
Z is a vector of covariates for which we wish to control in our
estimation. Our �rst-stage equation is thus

Yi = Zi� + f(Xi) + �i; [11 ]

where � is a vector of coe¢ cients and f(�) is an unknown real
function. Our intention is to estimate f(�) net of the e¤ects of
Z: In order to achieve the �nal goal of removing the in�uence
of Z on Y we must �rst remove the in�uence of X on Y: In
the �rst stage we begin by ordering the data according to X
such that X1 � ::: � XN where i 2 f1; :::; Ng: Yatchew (16,
17) shows that the in�uence of X on Y can be removed be
taking the (�rst) di¤erence (in [11]) according to X

Yi � Yi�1 = (Zi � Zi�1)� + (f (Xi)� f (Xi�1))+ [12 ]
+�i � �i�1; i = 2; :::; N:

Under the assumption that @Y=@X is bounded by a con-
stant, (f (Xi)� f (Xi�1)) goes to zero as N increases. Intu-
itively this assumption implies that, when the data are ordered
according to X, the marginal in�uence of X on Y is zero, so
that term can be dropped from the equation. OLS can then
be run on [12] to return an estimate of b�diff : Yatchew (16,

17) shows that because b�diff converges su¢ ciently quickly to
�; Zib�diff can be subtracted from both sides of [11] to obtain

Yi � Zib�diff = Zi
�
� � b�diff�+ f(Xi) + �i [13 ]

�= f(Xi) + �i: [14 ]

Denoting Yi�Zib�diff = Yi� bYi;diff = eY ; the combination of
the LHS of [13] and RHS of [14] is equivalent toeYi = f(Xi) + �i: [15 ]

We are now able to estimate f(�); which is the nonpara-
metric relationship between X and Y; net of the e¤ects of Z.
We do so for treatment, control and ATT estimates using the
same LOESS estimator described above. Loshkin (19) sug-
gests using LOESS in the second stage and wrote a Stata ado
�le which performs the estimate. We wrote a similar function
for R. The code is available from the authors upon request.

Yatchew (16, 17) noted that although b�diff is an unbi-
ased estimate of �, due to the di¤erencing, b�diff is relatively
ine¢ cient. However, he provides analytical higher order dif-
ferencing weights that can be applied to a high order di¤erence
generalization of [12] to greatly improve the e¢ ciency of esti-
mates. We incorporate these weights into our estimation using
the 10th order di¤erence (the highest order for which weights
are provided).7 See Yatchew (17) for detailed description of
the e¢ ciency issues and a table of the analytical weights.

Empirical Speci�cations. For each of our PLM analyses we in-
clude in Z covariates that we believe a¤ect the outcome of
interest. This means that we control for the covariates used
in each matching speci�cation and the complementary moder-
ating covariates. There are some notable exceptions, however,
in which we exclude or add covariates as controls. For each of
the analyses in which distance to major city is the moderat-
ing covariate of interest, we exclude distance to road from the
controls due to high correlation (multicollinearity). For each
of the Thailand socioeconomic analyses, we add province level
�xed e¤ects to the vector of covariates. For a detailed account
of the controls used in each speci�cation see Table S6. Com-
plete �rst stage results are available from the authors upon
request.

Use of PLM and LOESS.We use LOESS to estimate the re-
lationship between baseline poverty and the outcomes of in-
terest in Costa Rica (Figure 1(a)) because we are interested
in what actually happened to the poor over time rather than
simply the e¤ect of being poor. To identify the potential for
protected areas to act as a mechanism for poverty traps, we
do not want to partial out any of the variables that are corre-
lated with being poor. We simply want to observe how areas
with di¤ering levels of baseline poverty fared over time.

We view the other covariates (slope, distance to city and
percent agricultural workers) as moderating variables through
which protection a¤ects outcomes. For this reason we are in-
terested in identifying the speci�c e¤ect of these covariates,
net of other in�uences, on our outcomes. Thus we use PLM.
In addition, the use of PLM to isolate the speci�c e¤ects of
variables allows us to overlay these e¤ects on the suitability
maps with fewer concerns of confounding e¤ects

Suitability Mapping
Motivation.The illustrative suitability maps presented in the
main text characterize the suitability of end-period forested
land for protection, based on past observed relationships be-
tween covariates and the environmental and socioeconomic
outcomes. We characterize suitability along these two out-
come dimensions because, while the targeting of protected
areas is likely to be based on expected environmental out-
comes, the opportunity costs of protection are socioeconomic
in nature. Therefore, it would be bene�cial to a planner to
understand the expected joint outcomes of the establishment
of protected areas.

We choose to formulate our suitability maps based on
slope and distance to major city for two reasons. First, these
are measurements that are globally available and have been
used in past studies of protected areas. Second, these covari-
ates capture the notion of deforestation pressure (see main
text) and are therefore likely to be considered in the estab-
lishment of protected areas.

Formulation.To map expected suitability for protection in
Costa Rica and Thailand we begin by rasterizing the end-
period forest cover shape�les so that each raster cell is 3 ha in
size. We then create a distance to city and slope raster based
on these end-period forest cover rasters for each analysis.8

7 The PLM estimates were programmed in R v. 2.11.1. The code is available from the authors
upon request.
8 This leaves us with four initial rasters for each country: a distance to major city and slope raster
for the deforestation analysis, and a distance to major city and slope raster for the poverty analysis.
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The values of the rasters� cells are populated with measure-
ments of distance to major city and slope, respectively.

The results from the PLM heterogeneity analyses act as
the basis for our designation of expected suitability. The PLM
results are appropriate for the creation of these maps because
they map the continuous nonparametric e¤ect of the covari-
ates on the outcome of interest, net the e¤ect of other in-
�uencing covariates. To allow for aggregation of suitability
across covariates, we rescale the estimated covariate e¤ects
on avoided deforestation and poverty to fall within a range of
1 to 10.9 For example, the maximum estimated e¤ect of slope
on avoided deforestation in Costa Rica is 0.139 at a slope of
14%, so it is rescaled to 10. Conversely, the minimum esti-
mated e¤ect is 0.00087 at a slope of 50%, so it is rescaled to
0. Similarly, all estimated e¤ect between the min and max are
rescaled and rounded. The rescaled values are then assigned
to the distance to city and slope rasters for each analysis.10

For example, all of the cells (of the slope raster) with slope
values of 14 in the Costa Rica deforestation analysis are as-
signed a suitability score of 10. Comparable value assignments
are made for each covariate in each analysis.

As a result of these assignments each parcel (in each coun-
try) has two rescaled environmental suitability scores and two
rescaled socioeconomic suitability scores (one based on dis-
tance to city and the other based on slope). We use these
values to calculate the average suitability (separately for envi-
ronmental and socioeconomic outcomes) scores for each land
parcel. Figure S1 and S2 show the aggregated environmen-
tal and socioeconomic suitability on separate maps for Costa
Rica and Thailand, respectively. The �nal compound suit-
ability maps (Figures 2 and 3 in the main text) are created
by overlaying the aggregate environmental and socioeconomic
suitability maps.

On the �nal suitability maps, we highlight two types of
land parcels: those with expected �win-win� outcomes (yel-
low), and those with expected poverty exacerbation (black).
A parcel is designated as �win-win�if its average environmental
and socioeconomic suitability scores are jointly greater than
or equal to 6 (this corresponds to the top �ve deciles). Con-
versely, if the underlying covariate value of a parcel is associ-
ated with negative socioeconomic impacts then the parcels
is designated as unsuitable for protection due to potential
poverty exacerbation from protection. For instance, due to
the relationship between agricultural suitability and slope, �at
parcels in Costa Rica and Thailand are designated as unsuit-
able for protection.

Note on Thailand Results. In the �nal Thailand suitability
map there are distinct concentric circles of predicted �win-win�
outcomes. It can be seen from the underlying suitability maps
(Figure S2) and PLM results (Figure 1(d&e)) that these ex-
pected outcomes are driven by the nonparametric relationship
between the outcomes of interest and distance to a major city.
Figure 1(e) indicates that the greatest poverty reduction is
expected between approximately 50km and 90km. Expected
avoided deforestation is also positive along this range. The
range 55-75km, where both expected outcomes are relatively
high, is where a majority of the �win-win�areas lie.

While distance to major city drives the concentric circles
observed in Figures 3 and S2, it is but a one facet in the de-
termination of the joint suitability. In order for a parcel to
be designated as �win-win� there must be congruence in ex-
pected outcomes across distance to city and slope. Much of
the land that lies within the 50-75km range is also relatively
steeply sloped. Close examination of Figures 3 and S2 show
that this is not the case throughout. In fact, there are many

parcels within this range that are not designated as expected
�win-win�due to the underlying low slope.

Ancillary Analyses
Quantile Regression. In the results section of the main text,
we use the LOESS estimates to assert that the establishment
of protected areas has not acted as a mechanism for poverty
traps in Costa Rica. Our assertion stems from the fact that, in
the mapping of the LOESS, there is a general trend of greater
poverty alleviation in areas with higher baseline poverty. To
corroborate these results from the nonparametric LOESS esti-
mator, we use a parametric quantile regression (see (18) for a
nice overview). Quantile regressions estimate covariate e¤ects
at de�ned quantiles of the outcome. In our case, we use deciles
of the poverty index in 2000. We are interested in the response
to protection according to baseline poverty. To interpret the
results of a quantile regression as a treatment e¤ect on the
distribution of outcomes, we must invoke a rank preservation
assumption. This assumption implies that the poverty rank
among census tracts remains stable over time. Given that the
correlation coe¢ cient between baseline and outcome poverty
index is nearly 0.7, this assumption seems plausible.

We run a quantile regression (using deciles) of 2000
poverty index on an intercept and indicator of protection us-
ing the same matched set as is used in the LOESS analysis
(described above). We do not include any additional con-
trols in the regression because: (1) the LOESS estimator is
(essentially) a univariate regression method, and thus our in-
tention is to use similar speci�cations to that analysis; and (2)
the quantile regression is run using the preprocessed matched
set which is designed to be balanced across key confounding
covariates. Figure S9 presents the results of the quantile re-
gression in which the solid line represents the point estimates
at each decile with the corresponding pointwise 95% con�-
dence band in green. The point estimates can be interpreted
as the e¤ect on poverty of "moving" from unprotected to pro-
tected at each level of poverty. The results display a similar
trend to that seen in the LOESS results (Figure 1(a) of the
main text): namely that protection has had greater poverty
alleviating e¤ects on the poorer census tracts.

Agricultural Workers. In the main text, we use slope as a proxy
for agricultural suitability. Slope has been used in a similar
manner in previous studies (15) as well as a proxy for other
deforestation pressures (e.g., logging access; (19)). To support
the conjecture that the slope analysis is indeed highlighting
the impact of opportunity costs from agriculture, we run a
PLM analysis to study the heterogeneity of protection�s im-
pact conditional on baseline percentage of the workforce em-
ployed in agriculture in Costa Rica (where we have data on
this measure). An opportunity cost argument would predict
that avoided deforestation would be higher in areas with a
high percentage of the workforce in agriculture and poverty
impacts would be lower in these same areas. We observe this
relationship in Figure S4 (bottom panel).

Standard Errors.All of our analyses are preceded by matching
to improve balance across protected and unprotected units.
Because the matching is performed with replacement there
are repeated control observations in the �nal matched sam-
ples. The concern with repeat control observations is that

9Mathematica has a Rescale command which we rewrote for R.
1 0 In the rescaling of the socioeconomic e�ects of the covariates, only positive expected outcomes
are rescaled between 0 and 10. Any covariate value that is associated with socioeconomic e�ects
deemed unsuitable for protection (see below).
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precision of the standard error estimates in post-match analy-
ses (e.g., regression) may be overstated. In response to this
concern, we �rst note that our results are driven by the re-
lationships presented in the ATT estimates, rather than the
precision of these estimates. For example, we are more inter-
ested in the overall relationship between avoided deforestation
and slope than knowing whether or not avoided deforestation
was signi�cantly di¤erent from zero at 45 percent slope.

Second, we note that the standard errors of the �t pre-
sented in the main text are not likely to be understated. The
�nal estimate in each of our analyses (both LOESS and PLM)
is designed to be interpreted in a manner similar to a post-
matching, bias-adjusted di¤erence in means. This design al-
lows us to compare our results to the studies from which we
draw. Thus we are performing the �nal stage LOESS using
the independent variable of interest and the individual ATT,
which is simply the di¤erence between actual outcome and
imputed counterfactual outcome for each protected unit (see
LOESS section above). Therefore the degrees of freedom in
the estimation of the standard error of the �t is based only on
the number of observations in the protected sample, rather the
entire sample of protected and unprotected units (as would be
the case in a typical regression context). The fact that un-
protected units do not add to the degrees of freedom serves
to mitigate the e¤ect of repeated observations, which lie only
in the unprotected units.

Third, to o¤er the reader more con�dence that the stan-
dard errors used in Figure 1 are not substantially under-
stated, we calculate standard errors via bootstrapping. The
95% pointwise con�dence band is determined by the 2.5 and
97.5 percentile bootstrapped outcome at each point of interest
along the range of the independent variable. In each analysis,
the �nal stage LOESS estimate is bootstrapped 1000 times.11

The bootstrapped standard errors are overlaid on the stan-
dard errors of the �t in Figures S6-S8 in which it can be seen
that the two standard error estimates coincide closely. One
of the key insights that can be taken from Figures S6-S8 is
that our main results are robust to alternative methods of
estimating the standard errors.

Areal Interpolation
Costa Rica�s census tract boundaries are not spatially con-
sistent across time. The number of census tracts increased
from 4,694 in 1973 to 17,625 in 2000. Furthermore, the addi-
tion of census tracts over time did not follow any discernible
pattern, the newer subdivided census tracts do not necessar-
ily fall within the boundaries of the old census tracts. This
poses a problem for the comparability of the demographic

data over time. In order to make the 2000 data comparable
to the 1973 data, the geographic method of Areal Interpola-
tion (3) is implemented, as was done in Andam et al. (2).
Areal interpolation is a GIS method by which demographic
variables are made comparable across time given changes in
political boundaries. For our analyses, the 1973 census tracts
are used as baselines. Therefore, areal interpolation assigns
weights (assuming a uniform population distribution) based
upon the amount that the 2000 census tracts overlap with
the 1973 census tracts. These weights are used to interpo-
late the 2000 populations that reside within the 1973 census
tract boundaries. The resulting data set contains the original
1973 demographic data according to its native boundaries and
the 2000 demographic data distributed as if the census tract
boundaries had not changed since 1973.

Poverty Index for Costa Rica
Ideally, a poverty measure utilized in a quasi-experimental
study should be comparable across time. Costa Rica does not
have properly disaggregated income data that date back to
1973 (20). Therefore, to measure the socioeconomic impacts
of protected areas, an alternative metric is necessary. Prin-
cipal component analysis is one method by which variables
that are known to be associated with poverty can be used to
form a poverty index. Other authors (4) suggest a poverty
index for Costa Rica that uses indicators from the respective
census to create a socioeconomic measure that is both spa-
tially and temporally comparable. The variables included in
the poverty index are (* indicates a percentage): men in to-
tal population*, families who cook with coal or wood*, families
without washing machine*, families without refrigerator*, peo-
ple who are employed and get a salary as job remuneration*,
illiterate population aged 12 or more*, household dwellings
without connection to private or public water system*, house-
hold dwellings without sewers*, household dwellings without
electricity*, household dwellings without telephone*, dwellings
with earth �oor*, dwellings in bad condition*, dwellings with-
out bathroom*, dwellings without access to hot water*, depen-
dency ratio, average number of occupants per bedroom, average
years of education per adult. A similar measure was employed
by the Mexican government in the analysis of the PROGRESA
program (4).

The poverty index for 1973 is used as a covariate for pre-
processing prior to all socioeconomic and deforestation analy-
ses. The 2000 poverty index is used as the outcome for all of
the socioeconomic analyses. See Andam et al. (2) for a more
detailed explanation of the poverty index estimation.
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Figure S1b. Costa Rica Socioeconomic Suitability MapProtected Prior to 1980
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Figure S1a. Costa Rica Environmental Suitability Map

Protected Prior to 1980

Fig.S1. Costa Rica protected area suitability maps by environmental and socioeconomic suitability.
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Figure S2b. Thailand Socioeconomic Suitability MapProtected Prior to 1985

Fig.S2. Thailand protected area suitability maps by environmental and socioeconomic suitability.
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Costa Rica: Avoided Deforestation by Baseline Poverty
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Fig.S3. Costa Rica: Full LOESS results.
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Costa Rica: Avoided Deforestation by Agricultural Workers

Percent Agricultural Workers

Av
oi

de
d 

D
ef

or
es

ta
tio

n 
an

d 
95

%
 C

B

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.05 0.10 0.15 0.20 0.25

Costa Rica: Poverty by Agricultural Workers

Percent Agricultural Workers 

Po
ve

rty
 In

de
x 

an
d 

95
%

 C
B

−4

−2

0

2

4

0.05 0.10 0.15 0.20 0.25

Costa Rica: Avoided Deforestation by Distance to Major City
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Fig.S4. Costa Rica: full heterogeneous response to protection results.
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Thailand: Poverty by Distance to Major City
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Fig.S5. Thailand: full heterogeneous response to protection results.
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Costa Rica: Avoided Deforestation by Baseline Poverty
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Fig.S6. Costa Rica: Comparison of bootstrapped standard errors to standard errors of the �t.
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Costa Rica: Avoided Deforestation by Slope
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Fig.S7. Costa Rica: Comparison of bootstrapped standard errors to standard errors of the �t.
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Thailand: Poverty by Distance to Major City
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Fig.S8. Thailand: Comparison of bootstrapped standard errors to standard errors of the �t.
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Costa Rica: Quantile Regression
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Fig.S9. Costa Rica: Quantile regression estimating impact of protection according to deciles of 2000 poverty index.
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egnaRnaideMnaeMnoitpircseDelbairaV
High Productivity Land Land Use Capacity I, II & III

L d it bl f i lt l d ti

Standard
Deviation

Land suitable for agricultural production.
May require special land and crop
management (classes II & III).

Medium-High Land Use Capacity IV
Productivity Land Moderately suitable for agricultural

production; permanent of semi-permanent
crops

M di L L d U C i V VI & VII

0.0289 0 0.167 0-1

0.008 0 0.09 0-1

n 
C

ov
ar

ia
te

s

Medium-Low Land Use Capacity V, VI & VII
Productivity Land Strong limiting factors on agricultural

production.

Distance to Forest Edge Distance (km) to the edge of the forest in
1960

Distance to Road Distance (km) to nearest road in 1969. 16.99 14.28 11.62 0.04-53.31

Distance to Major City Distance (km) to nearest major city: Limon

2.79 2.35 2.19 0.0001-11.2

0.0802 0 0.272 0-1

D
ef

or
es

ta
tio

n

Distance to Major City Distance (km) to nearest major city: Limon,
Puntarenas or San Jose.

Baseline Poverty Poverty index measured in 1973. 14.9 15.8 6.43 -6.4-28.9

Forest Cover Percentage of census tract occupied by forest
in 1960.

% High Productivity Percent of census tract occupied by Land
Land Use Capacity I, II & III land.

0.118 0 0.22 0-1

77.4 56.9 49.53 9-180.5

0.412 0.383 0.342 0-1

at
es

%Medium-High Percent of census tract occupied by Land
Productivity Land Use Capacity IV land.

%Medium-Low Percent of census tract occupied by Land
Productivity Land Use Capacity VI, VII or VIII land.

Distance to Major City Average distance (km) from each 300m2 land
plot within a census tract to nearest major
it Li P t S J

0.347 0.156 0.387 0-1

57.3 49.7 41.28 0.0037-208

0.295 0.04 0.377 0-1

So
ci

oe
co

no
m

ic
 C

ov
ar

ia

city: Limon, Puntarenas or San Jose.

Roadless Volume The sum of the product of area and
distance to nearest road (1969) for every
square with side length 100m within the census
tract.

308,000 66,400 699,100 0.28-7,590,000

Table S1. Costa Rica - Summary statistics and description of covariates used as controls to form counterfactual samples.

S

Ferraro, Hanauer and Sims Supporting Information 17



egnaRnaideMnaeMnoitpircseDelbairaV
Slope Slope of parcel (degrees) 5.905 5 5.48 0-43

Standard
Deviation

Distance to Major River Distance (km) to major river 
(flow accumulation > 5000)

Elevation Elevation (m) of parcel 555.535 497 316.942 0-2183

Distance to Forest Edge Distance (km) to the edge of the forest in
1973

Distance to Road Distance (km) to nearest road in 1962 21.08 16.4 17.682 0.00076-93.8

2.747 1.884 2.775 0.0001-19.58

30.598 27.62 19.552 0.004-109.3

fo
re

st
at

io
n 

C
ov

ar
ia

te
s

Distance to Major City Distance (km) to nearest major city
(pop > 100,000)

Average Slope Average slope of subdistrict (degrees) 1.018 0.0504 2.042 0-14.33

Maximum Slope Maximum slope of subdistrict (degrees) 4.05 0.9882 6.99 0-46.99

Distance to Major River Distance (km) to major river 
(flow accumulation > 5000)

21.61 0 16.61 0.01-97.82

113.573 113.5 42.621 7.26-254.3

D
ef

Forest Cover 1973 Percent of subdistrict covered by forest, 1973 0.194 0.00423 0.315 0-1

Distance to Major City Distance (km) to nearest major city
(pop > 100,000)

Distance to Major Road Distance (km) to major road in 1962 5.26 7.615 6.22 0.002-76.16

Distance to Any Road Distance (km) to minor road in 1962 10.42 3.448 0.002 88.08

Distance to Thai Border Distance (km) to Thailand border 91 62 91 33 52 36 0 062 218 9

85.59 81.03 44.51 10.05-222.6

ec
on

om
ic

 C
ov

ar
ia

te
s

Distance to Thai Border Distance (km) to Thailand border 91.62 91.33 52.36 0.062-218.9

Near Watershed Within 1 km of major watershed boundary 0.461 0 0.499 0-1

Distance to Rail Line Distance (km) to rail line 55.05 42.95 45.76 0.015-222.1

Dist. to Mineral Deposit  Distance (km) to nearest mineral deposit 119.46 102.7 84.73 1.371-376.4

Temperature Average temperature (°C) for subdistrict 25.37 25.89 1.448 18.07-27.85

Rainfall Average monthly rainfall (mm) 1064 1021 225.3 375.8-2308

So
ci

oe

Rainfall Average monthly rainfall (mm) 1064 1021 225.3 375.8-2308

Table S2. Thailand - Summary statistics and description of covariates used as controls to form counterfactual samples.
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Covariate Status
Unmatched 0.008 0.205 -0.197 0.307 0.197

Matched 0.008 0.008 0.000 0.000 0.000 100.0%

Unmatched 0.029 0.198 -0.170 0.259 0.170
Matched 0.029 0.029 0.000 0.000 0.000 100.0%

Unmatched 0.080 0.507 -0.427 0.563 0.427
Matched 0.080 0.080 0.000 0.000 0.000 100.0%

Unmatched 2.857 2.045 0.812 0.162 0.886
Matched 2.857 2.713 0.143 0.031 0.148 82.3%

Unmatched 17.354 15.336 2.017 0.078 2.099
Matched 17.354 16.709 0.645 0.026 0.975 68.0%

Unmatched 76.980 80.515 -3.535 0.037 15.894
Matched 76.980 77.912 -0.933 0.008 2.295 73.6%

Table S3. Costa Rica - Covariate balance for baseline avoided deforestation analysis.

Mean Prote- 
cted Plots

Mean Cont- 
rol Plots

Difference in 
Mean

Normalized
Difference

Mean eQQ 
Difference

% Improve 
Mean Diff.

High Land Use 
Capacity

Distance to Major 
City

Medium-High Land 
Use Capacity

Medium-Low Land 
Use Capacity

Distance to Forest 
Edge

Distance to Road

-0.2595*** -0.14738***
{0.0062} (0.0175)

N Treated NA 2,808
(N Available Controls) NA (13,609)

*** Indicates significance at the 1% level
† ATT is post-match difference in means using regression bias adjustment 
  to control for bias in finite samples
(Abadie-Imbens heteroskedasticity robust standard errors)
{Standard errors}

Difference in 
Means

Mahalanobis
Matching†

Avoided Deforestation 
(Yprotected - Yunprotected )

Table S4. Thailand - Baseline avoided deforestation analysis.
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Covariate Status
Unmatched 109.670 114.061 -4.395 0.040 8.498

Matched 109.670 110.422 -0.756 0.008 4.958 82.8%

Unmatched 31.160 17.161 13.999 0.401 14.001
Matched 31.160 29.419 1.741 0.039 2.054 87.6%

Unmatched 3.620 2.261 1.359 0.242 1.358
Matched 3.620 3.304 0.316 0.051 0.317 76.7%

Unmatched 7.960 4.989 2.970 0.254 2.972
Matched 7.960 7.807 0.152 0.012 0.437 94.9%

Unmatched 35.930 27.237 8.691 0.217 8.689
Matched 35.930 34.885 1.043 0.024 2.464 88.0%

Unmatched 697.130 486.612 210.519 0.307 210.448
Matched 697.130 635.127 62.004 0.093 62.061 70.6%

Table S5. Thailand - Covariate balance for baseline avoided deforestation analysis.

Mean Prote- 
cted Plots

Mean Cont- 
rol Plots

Difference in 
Mean

Normalized
Difference

Mean eQQ 
Difference

% Improve 
Mean Diff.

Distance to Major 
City

Distance to Road

Distance to Forest 
Edge

Slope

Distance to Major 
River

Elevation

Covariate Exclusions Inclusions Justification

Slope Land Use Capacity†‡ NA LUC is a function of slope

Distance to Major City Distance to Road†‡ NA Colinearity with distance to city

ANANANsrekroW larutlucirgA %

Slope NA Province Fixed Effects‡ Control for baseline poverty

Distance to Major City Distance to Road†‡ -- Colinearity with distance to city
Distance to Railroad‡ -- Colinearity with distance to city

-- Province Fixed Effects‡ Control for baseline poverty
dnaliahTaciR atsoC

Baseline set of controls for each analysis include all matching covariates (Table S1) and other mediating covariates
† Indicates exclusion/inclusion from the deforestation analysis
‡ Indicates exclusion/inclusion from the socioeconomic analysis

Table S6. Exclusions and Inclusions, with respect to the baseline set of controls, in PLM analyses.
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